Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465936

RESUMO

The standard visual acuity measurements rely on stationary stimuli, either letters (Snellen charts), vertical lines (vernier acuity) or grating charts, processed by those regions of the visual system most sensitive to the stationary stimulation, receiving visual input from the central part of the visual field. Here, an acuity measurement is proposed based on discrimination of simple shapes, that are defined by motion of the dots in the random dot kinematograms (RDK) processed by visual regions sensitive to motion stimulation and receiving input also from the peripheral visual field. In the motion-acuity test, participants are asked to distinguish between a circle and an ellipse, with matching surfaces, built from RDKs, and separated from the background RDK either by coherence, direction, or velocity of dots. The acuity measurement is based on ellipse detection, which with every correct response becomes more circular until reaching the acuity threshold. The motion-acuity test can be presented in negative contrast (black dots on white background) or in positive contrast (white dots on black background). The motion defined shapes are located centrally within 8 visual degrees and are surrounded by RDK background. To test the influence of visual peripheries on centrally measured acuity, a mechanical narrowing of the visual field to 10 degrees is proposed, using opaque goggles with centrally located holes. This easy and replicable narrowing system is suitable for MRI protocols, allowing further investigations of the functions of the peripheral visual input. Here, a simple measurement of shape and motion perception simultaneously is proposed. This straightforward test assesses vision impairments depending on the central and peripheral visual field inputs. The proposed motion-acuity test advances the capability of standard tests to reveal spare or even strengthened vision functions in patients with injured visual system, that until now remained undetected.


Assuntos
Percepção de Movimento , Campos Visuais , Humanos , Limiar Sensorial/fisiologia , Acuidade Visual , Percepção de Movimento/fisiologia , Psicofísica
3.
J Gambl Stud ; 38(2): 627-634, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34213750

RESUMO

Gambling disorder (GD) is a form of behavioral addiction. In recent years, it has been suggested that the application of transcranial Direct Current Stimulation (tDCS) to the dorsolateral prefrontal cortex (DLPFC), which plays a key role in top-down inhibitory control and impulsivity, may represent a new therapeutic approach for treating addictions. Here we investigated the effectiveness of a novel low dose tDCS protocol (i.e. six sessions of right anodal/left cathodal tDCS for 20 min, with a current intensity of 1 mA) applied to DLPFC in a patient with GD. To evaluate the effect of the proposed intervention, cognitive, psychological and behavioural evaluations were performed at different time points, pre and post intervention. The results showed improvement of impulsivity, decision making, and cognitive functioning after tDCS intervention. Findings of the present study suggest that low doses of right anodal/left cathodal tDCS to DLPFC may effectively improve gambling behaviour. They also suggest to carefully evaluate the effects of this tDCS polarity on the patient's emotional state. The current protocol warrants further investigation in large groups of patients, as it may provide relevant insights into the design of effective, low dose treatments of gambling disorder.


Assuntos
Jogo de Azar , Estimulação Transcraniana por Corrente Contínua , Tomada de Decisões/fisiologia , Córtex Pré-Frontal Dorsolateral , Jogo de Azar/psicologia , Humanos , Comportamento Impulsivo , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Transl Vis Sci Technol ; 10(1): 9, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33505776

RESUMO

Purpose: Damage of retinal representation of the visual field affects its local features and the spared, unaffected parts. Measurements of visual deficiencies in ophthalmological patients are separated for central (shape) or peripheral (motion and space perception) properties, and acuity tasks rely on stationary stimuli. We explored the benefit of measuring shape and motion perception simultaneously using a new motion-based acuity task. Methods: Eight healthy control subjects, three patients with retinitis pigmentosa (RP; tunnel vision), and 2 patients with Stargardt disease (STGD) juvenile macular degeneration were included. To model the peripheral loss, we narrowed the visual field in controls to 10 degrees. Negative and positive contrast of motion signals were tested in random-dot kinematograms (RDKs), where shapes were separated from the background by the motion of dots based on coherence, direction, or velocity. The task was to distinguish a circle from an ellipse. The difficulty of the task increased as ellipse became more circular until reaching the acuity limit. Results: High velocity, negative contrast was more difficult for all, and for patients with STGD, it was too difficult to participate. A slower velocity improved acuity for all participants. Conclusions: Proposed acuity testing not only allows for the full assessment of vision but also advances the capability of standard testing with the potential to detect spare visual functions. Translational Relevance: The motion-based acuity task might be a practical tool for assessing vision loss and revealing undetected, undamaged, or strengthened properties of the injured visual system by standard testing, as suggested here for two patients with STGD and three patients with RP.


Assuntos
Percepção de Movimento , Retinite Pigmentosa , Humanos , Retinite Pigmentosa/diagnóstico , Escotoma , Acuidade Visual , Campos Visuais
5.
Front Hum Neurosci ; 14: 120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296320

RESUMO

Top-down attention towards nociceptive stimuli can be modulated by asking participants to pay attention to specific features of a stimulus, or to provide a rating about its intensity/unpleasantness. Whether and how these different top-down processes may lead to different modulations of the cortical response to nociceptive stimuli remains an open question. We recorded electroencephalographic (EEG) responses to brief nociceptive laser stimuli in 24 healthy participants while they performed a task in which they had to compare two subsequent stimuli on their Spatial location (Location task) or Intensity (Intensity Task). In two additional blocks (Location + Ratings, and Intensity + Ratings) participants had to further provide a rating of the perceived intensity of the stimulus. Such a design allowed us to investigate whether focusing on spatial or intensity features of a nociceptive stimulus and rating its intensity would exert different effects on the EEG responses. We did not find statistical evidence for an effect on the signal while participants were focusing on different features of the signal. We only observed a significant cluster difference in frontoparietal leads at approximately 300-500 ms post-stimulus between the magnitude of the signal in the Intensity and Intensity + Rating conditions, with a less negative response in the Intensity + Rating condition in frontal electrodes, and a less positive amplitude in parietal leads. We speculatively propose that activity in those electrodes and time window reflects magnitude estimation processes. Moreover, the smaller frontal amplitude in the Intensity + Rating condition can be explained by greater working memory engagement known to reduce the magnitude of the EEG signal. We conclude that different top-down attentional processes modulate responses to nociceptive laser stimuli at different electrodes and time windows depending on the underlying processes that are engaged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...